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Abstract 
In this report we present an approach for learning to identify human faces contained within greyscale images. 

We randomly extract features from a set of pre-training images that contain either informative or non-

informative information about the object of interest. During this feature extraction process we vary either the 

total number of features that are extracted with a fixed window size, or we vary the window size of each of the 

features that is to be extracted. These features are then used to learn three classification functions. The 

learned functions will then be tested on images to see if they contain a face or not, and these experiments are 

reported. We show that even with random features that may contain no information about the object of 

interest, we can achieve high detection accuracies. Images used either contain a front view of a person's face, 

or an image of a object that is not a face. 
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1. Introduction 
Face detection is the task by where we try to identify whether or not some given image contains a 

human face. However, this task is not as simple as it sounds, and has even been proven to be 

difficult in [6, 7]. The reasons as to why face detection is so hard is that no two faces are identical, 

and there will always be variations in their appearance and posture; such as faces that are wearing 

glasses, have facial hair and the difference in skin contrast (some people's skin is light and some are 

dark).  

In today's world we are surrounded by gadgets that will most certainly have some sort of feature on 

them that involves the detection of something through a camera. Many of today's mobile phones 

have either face detection or smile detection to automatically shoot a photo, or to help with auto 

focusing. Other applications are for biometrics, video surveillance [9], and funding is also being 

placed into research for energy conservation with TVs [10]; where if the TV detects that there is not 

a face directly looking at its screen in the room, then it turns itself off.  

To achieve this, we adopt Machine Learning techniques [8] to learn a classification function, and 

then we test this function on a set of unseen images to see how accurate it is, and to work out its 

trade-offs. In this paper we discuss six different classifiers: three classification functions combined 

with two different methods of feature selection and extraction (see subsection 2.1). The first 

method we shall see is varying the number of features that we extract from training images. Where 

the second method is varying the size of each of the extracted features. The classification functions 

applied in this paper are the k-Nearest Neighbour, Linear Support Vector Machine and Naive-Bayes 

Classifier algorithms. At the end of this report we shall see which classification function is most 

suited to each method, as well as what the trade-offs are for the two different methods when it 

comes to accuracy. 

Unlike other research papers which use more informative features, you will see here that we are 

using completely random features. This is to see how well different classifiers can fair, when they are 

not being given specific features to look for when attempting to identify faces within a given image. 

 

1.1. Related Work 

The majority of this paper is based on the work done in [1] and some parts of [11], however here we 

use more low-level features. There have been several approaches done that all use low-level 

features, such examples are [3, 12, 14], where [12] uses edge type features combined with a 

decision tree for the classification of faces. Conversely, there are the approaches that use higher-

level features, or informative features, such as in [1, 5, 6, 11, 13, 15]. Here, [15] uses the simplest of 

all classification functions, a k-Nearest Neighbour classifier, whilst generating a low dimensional 

subspace from an  Eigen-face basis. 

 

1.2. Overview of the Approach 

The following gives a quick outline as to the approach that was used. This approach uses certain 

aspects from [1], but is very closely based on the approach used in [11] and consists of four phases. 
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Figure 1: Visual example of pipeline 

Figure 1: Visual example of the pipeline used. The input Image Dataset is the set of all images used throughout the system. 

We then extract some of the images for the Feature Extraction phase. A different set of images is then used for the Image 

Representation and Learning the Classifiers phases, which are contained within Train Classifier. Finally, the remaining 

images are used for Testing the Learned Classifiers. 

 

1. Random Feature Selection and Extraction 

In this first phase of the system, we need to randomly extract portions, or image patches, 

from a set of given images. Each of these image patches are used to help represent other 

images of the same class, and to help learn the classifiers in the following phases. 

 

2. Image Representation by Binary Matrix 

Using the image patches that we just extracted, we need to construct a binary vector for 

each input image of a different set to that of the ones in the previous phase. This vector is 

formed by comparing each image patch against each input image using a similarity-based 

measure. This vector allows us to represent each input image in terms of the image patches. 

Combining all of the generated binary vectors together gives us a binary matrix. 

 

3. Learning the Classifiers 

Following on from the previous phase, each of the given input images are now represented 

as binary vectors, with some label that tells the system if the image is object (contains a 

face) or non-object (does not contain a face), meaning the system has some prior knowledge 

about these images. Each of these vectors are plugged into some classification function that 

learns whether to classify some other given image as being object or non-object. 

 

4. Testing the Learned Classifiers 

In this final phase, we now use a different set of input images again, constructing binary 

vector in the same way as before for each image and by using the same image patches. 

Except this time, there is no label telling the system what class each image represents. This 

time the system must predict that label itself, using the previously learning classification 

function. We use the results obtained here to generate accuracies and graphs to better 

demonstrate their trade-offs. 

Figure 1 shows a visual representation of the approach, in what is known as a pipeline. 

The rest of the paper is organised as follows. In section 2 we describe the feature selection and 

extraction process more thoroughly. In section 3 we discuss the image representation process, as 

well as a more detailed look at how we train each of the classifiers. Sections 4, 5 and 6 explain each 

of the classification functions used, in detail. Section 7 describes the experiments that were 

performed, with results, and section 8 concludes the report with a conclusion and summary.  
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2. Random Features and Window Sizes 
Many of the more recent recognition systems all use a similar technique to recognise different 

objects. This technique is to extract class specific image patches as features to help train and test a 

recognition system. In most systems, these image patches contain informative information about 

the object that they have been extracted from, and there are numerous ways to do this, such as 

Eigen-patches in [15].  

However, unlike the recent systems of today, the methodology discussed within this paper will be 

using completely random image patches, instead of using informative image patches like other 

systems. In the following subsections, we first introduce a scheme used for extracting our image 

patches as used in [1]. The feature selection and extraction process is explained in subsection 2.1. 

We then describe another method, by where we vary the size of each of the image patches in 

subsection 2.2. 

 

2.1. Feature Selection and Extraction 

In this section, we are first going to outline the process that is used to select the image patches that 

we are going to use for the classification process during training, and then we describe the process 

of how we go about extracting them. Before this, however, a bit of terminology is to be explained. 

Features: So far we have been using the word image patches. In general, image patches and features 

are exactly the same thing. A feature is a portion of an image that contains some information about 

that image. For example, if we were trying to recognise a car from an image, then a feature of this 

car image could be something like its tyre. If we then tried to use this same feature to recognise an 

image of a chair, then it would fail. This is because the car tyre is a class specific feature that will only 

describe the class that it came from - in this case, a car. 

In the terminology above, the feature described would have been an informative feature, because 

the feature would have contained maximal information about its class. In this paper, we are using 

random features which will rarely contain important information about its class. 

The idea here is to select features that are class specific, and may or may not convey maximal 

information about its class. Selected features will all be of the same size, and the same number of 

features will be selected and extracted from each image in the pre-training set. The pre-training set 

follows the same idea as introduced in [1]. At the beginning, there will be some set of all images 

where 50% of them are object (contain a face), and the other 50% are non-object (do not contain a 

face). The pre-training set is a set of images that will contain 10% of object and non-object images, 

and will be completely separate from the training and testing sets. Normally, a system would select 

and extract its features from the training set. 

Features are selected by randomly generating two values, one value is the x-coordinate and the 

other is the y-coordinate. Each value is restricted between 0, and the height/width of each image 

minus the size of a feature. Once we have the x- and y-coordinates, the feature is then extracted 

from the current image by cropping the image around it. The extracted feature is then stored inside 

of a feature array for training the system later, where each feature itself is in turn represented by an 

array of pixel values. 
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Figure 2: Example of image dataset 

Figure 2: Examples of face and non-face images used during the training and testing phases. Each image is 92x112 pixels. 

 

Figure 3: Example of possible features 

Figure 3: Examples of random features that may be extracted by the system. Each feature here is 24x24 pixels. As features 

are selected randomly, then we get both informative and non-informative features, such as the first feature in this example 

set, and the final feature respectively. 

 

Once we have extracted the features from each image in the pre-training set, we then move on to 

the actual training phase. No more processing is to be done to the features, as we want them to be 

completely random and unaltered - as well as the fact that we are not interested in only having 

informative features for training. 

Figure 2 shows a subset of the images that were used during the face detection experiments for 

training and testing, while Figure 3 shows some of the possible features that can be extracted by the 

system. Here you will notice that some of these features are informative, while some of them 

contain no information about the class it is trying to represent. For example, the first two example 

features presented clearly hold very specific information about the face class (eye and part of a 

mouth) that will help the system to later predict faces within images. However, the final two 

features do not really hold any real important information of use at all; the final feature itself is 

trying to represent that of a non-face class image of a house, but here it looks like we could have the 

top of a person's forehead or even just the background. 

 

2.2. Varying Window Sizes 
In the previous subsection we discussed the selection and extraction process for features. In this section 

the technique is more-or-less the same, except we will be using different sized features. 

Unlike before, where we extracted x features from y images with a fixed size w, this time we will be 

extracting a fixed number of features x' from y images with a varying size w'. When we extract a feature 

from an image in the pre-training, we call the size of the feature the window size, as we are only looking 

at a portion of the image as if we were looking through a window. 

The selection and extraction process are exactly the same as before, except this time we are using 

different window sizes. Therefore, during the classification process, we use one of two techniques with 

different classifiers; either were vary the number of features extracted from each pre-training image or 

we vary the size of each feature extracted from each image to test accuracy on classification.  
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Figure 4: Correlation Coefficient matrix 

Figure 4: This is an example of a correlation coefficient matrix. Values can range between -1.0 to 1.0. The closer the value 

is to 1.0, the higher the probability of the two image regions matching. Here the highest coefficient is 0.9, so it is very likely 

that this image contains the proposed feature. 

 

3. Training the System 
In this section, we are going to outline the training process used after feature selection and 

extraction. Once every feature has been extracted, we will have obtained a feature array containing 

all of the random features that the system has extracted for us. On its own, this array means nothing 

to the system, so we need to construct a more meaningful data structure for the system. 

First, we discuss how to see if an image contains one of the features in subsection 3.1, then we 

explain in detail how this information is used to construct what is known as a binary matrix in 3.2. 

 

3.1. Matching by Normalized Cross-Correlation 

There are many ways to see if a feature is contained within some image, and one of these methods 

is to use normalized cross-correlation. This function takes as input two matrices, one matrix is the 

actual training image itself, and the other is one of the features. What normalized cross-correlation 

does is take the feature and scan it across the training image. At each position, it will compute a 

correlation coefficient which tells us the likelihood of the feature matching the current portion of the 

training image. This forms a matrix of correlation coefficients between the values of -1.0 and 1.0. 

The normalized cross-correlation algorithm that we use closely follows that of [5], 

         
          

   
                  

           
   

    

 
                  

 
    

 

where, 

 f is the training image. 

 t is the template (feature). 

   is the mean of the feature. 

  
   

 is the mean of f(x,y) in the region under the feature. 

An example of a correlation coefficient matrix is show in Figure 4. 

 

3.2. Thresholding and constructing a Binary Matrix 

In the previous subsection, we discussed in detail how to construct the correlation coefficient matrix 

by using normalized cross-correlation. This matrix holds more useful information for the system,  
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Figure 5: Example of a binary matrix 

Figure 5: An example of a binary matrix with its corresponding identity vector. Here you can see clearly that each row of 

the matrix represents an image, and each column a feature. In the matrix a 1 represents that a feature in present within the 

image, a 0 stating that it is not. In the identity vector, a 1 represents an object image, a 0 a non-object image. Each row is 

also known as a Feature Vector.  

 

than that of the feature array, yet it is still conveys no actual information on its own. In this part we 

will be describing the process of generating a binary matrix, which is something the system can 

understand perfectly, and is the final product of the training phase. 

In Figure 4 we presented a visual representation of the correlation coefficient matrix. This was 

constructed after one run through of normalized cross-correlation, using some feature and some 

training image. The problem is that we still do not know if that training image contains that feature, 

and this is where thresholding comes in. The threshold is some arbitrary value that says: 

"If some given value is greater than the threshold value, then we accept the given value. Otherwise 

we ignore it." 

Thresholding is a technique that is usually used with Perceptrons, as in [19, 20]. However, the same 

idea can be used here. Firstly, we extract the highest coefficient value from the correlation 

coefficient matrix. With this value, we then compare it to some threshold value. If the highest 

coefficient value is greater than or equal to the threshold value, then we return a 1, else a 0 is 

returned. 

      
                       
                       

  

Therefore, a 1 represents that the current training image contains the current feature, where as a 0 

represents that the current feature is not contained within the current training image. As previously 

stated, this process is repeated for each feature for each training image, such as: 
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Because of this, a binary matrix is generated which is an array of rows and columns. Each row 

represents each training image, and each column represents each feature, as shown in Figure 5. 

More formally, each row of the binary matrix is of the form F = [F1, ..., Fn], this is a feature vector, and 

it represents each image in feature space. All together, these feature vectors form a binary matrix, or 

a statistical model. 

Each of these feature vectors, in the statistical model, can then be used to plot data points. For 

example, if we have a feature vector of the form [2,3,4], then this references a data point in 3-

dimensional space at position [2,3,4]. Since feature vectors can contain many hundreds of values, we 

say that these data points are plotted in high-dimensional space on some hyper-plane. 

During the construction of the matrix, another vector is also being generated. This vector is an 

identity vector, and it corresponds to each row within the matrix. The identity vector tells the system 

what type of image each row in the matrix represents, a 1 in the vector tells the system that the 

current row represents an object image, a 0 a non-object image. We have this corresponding 

identity vector because the training set is a set of seen cases, such that the system has prior 

knowledge about the images, unlike with the testing set, which is a set of unseen cases.    
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Figure 6: Example of a kNN classifier 

Figure 6: Example of a kNN classifier. Here we are trying to predict the identity of the data point shaped as a triangle, is it 

a square or a circle? If we assume that k=3, then we see that we have two data points labelled as squares, and one labelled 

as a circle. Therefore, squares win the majority vote, and the triangular data point is predicted as being a square. 

 

4. Classification by Non-linear Separation 
Once the system has been trained, and the statistical model (binary matrix) has been constructed, 

we can  test the system on images that it has not previously seen, and must predict what classes it 

thinks they are from. In this section, and in the following two sections, we will discuss the three 

classification processes that are used during the testing phase. Outlined in this section is the non-

linear separation classifier known as a k-Nearest Neighbour (kNN). 

During the classification process, the system constructs a binary vector which represents each image 

in feature space, also known as a feature vector. The process to do this is exactly the same as during 

the training phase, only this time the system does not generate a corresponding identity vector. This 

is because the system has no knowledge as to what class each of the testing images represent. It is 

the identity of the current image that the system is going to predict, using the statistical model 

created during training. 

The system predicts the identity of the current image by plugging the constructed feature vector 

into some classification function, f(X). It is the job of this function to return one of two values: 0 or 1. 

Here, the two binary values have the same meaning as before, 1 is for object images, and 0 is for 

non-object images. 

The kNN classification function works by measuring the Euclidean distance between the testing data 

point from the testing feature vector, to every other data point from the statistical model. The 

Euclidean distance is calculated as follows, where x is the feature vector for the testing image, and y 

is some feature vector from the statistical model: 

                
         

               

We use this equation to calculate the distance from the current testing data point to all other data 

points. The closest k points with minimal distance are observed, and the predicted identity for the 

current test point becomes the identity label that has the mass majority from the k points as shown 

in Figure 6. k is normally selected as an odd value to stop collisions. A more detailed description of 

kNNs can be found in [4, 15].  
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Figure 7: Example of a SVM classifier 

Figure 7: Example of a SVM. Here we have two different classes represented by circle and square data points. The bold 

centre line running through the middle of the points is the 'decision boundary', and clearly separates the two classes. The 

two outer lines are the boundaries of the margin - the filled in data points being the support vectors. 

 

5. Classification by Linear Separation 
In this section we outline the linear separation classifier known as a Linear Support Vector Machine 

(SVM). This is the second classification function used, and is different from the previous kNN 

function. A Linear Support Vector Machine assumes that the data is linearly separable. If we have 

numerous data points plotted onto a 2-dimensional plane, then there will be some line that will cut 

through all the data points, almost perfectly separating the two classes as demonstrated in Figure 7. 

This same assumption also works for higher dimensional spaces, except the line becomes a (hyper) 

plane - generally known as a decision boundary. 

The decision boundary can be placed into multiple positions using weights that are calculated during 

the training phase; so we use a margin to maximise the distance between the decision boundary and 

the data points either side. To calculate the width of the margin we use the following equation, 

    
 

   
          

 

 

Where W is the array of weights. Once the Maximum Margin Surface (MMS) has been found, then 

this is the decision boundary that we use. For further terminology, the data points the maximal 

margin touches against are known as support vectors. A more detailed description of SVMs can be 

found in [2, 20, 28]. 

An SVM predicts the identity of the current testing image by plugging the generated feature vector 

for each testing image into the SVM classification function, f(x). Similar to the kNN, this function 

predicts the identity of the testing image and returns either a 0 or 1. 

The simplest way to explain how a SVM predicts the identity of the current image is as follows. Once 

the classification function has the testing feature vector, it then generates a data point 

corresponding to where the vector points to in a high-dimensional space. Depending on where this 

data point is, the SVM will work out which side of the decision boundary it is on. If the data point is 

on one side, then the point represents an object image, otherwise it is on the other side and 
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corresponds to a non-object image. Working out which side represents which class is calculated 

during training, whilst the margin is also being calculated. In general, the support vectors that the 

margin pushes up against will be of one class on one side, and of the opposite class on the other. 

That is, if there are two support vectors on one side, then they will most certainly be of the same 

class. But this is not always true.  



15 
 

Fi 
Object Non-

Object 

0 1/2 0/1 

1 1/2 1/1 
 

Figure 8: Example of Naive-Bayes look-up table 

Figure 8: Example of a look-up table generate for one feature and with three training images. '1' and '0' in the first column 

represent whether or not the feature is present in the training image. Two of the images were object, the remaining images 

being non-object. If we look at the [1-Object] pairing, then we see that only one of the two object images contains this 

feature, so there is a 50% probabilistic chance of this feature being contained within an object image. Finally, there is a 2/3 

probability of seeing an object image, and 1/3 probability of seeing a non-object. 

 

6. The Naive-Bayes Classifier 
In this section we outline the Naive-Bayes Classifier (NB). This classification function is similar to a 

kNN classifier, as it also assumes that the data it non-linear. However, it is also different from the 

previous two, as it acts naively towards the given data. By this, we mean that it assumes that all 

features are independent from one another. So just because an image contains one non-object 

feature, it does not mean that it will contain the following non-object feature. The following 

description is closely based to the description of a Naive-Bayes classifier that can be found in [21, 26]. 

The Naive-Bayes classifier represents each class with a single probabilistic summary. This 

probabilistic summary is calculated by using the Bayesian Rule as follows: 

        
          

    
 

Here, P(C) is the probability that the current image is an object image, P(X|C) is the likelihood that 

the current feature is object given that the current image is object, and P(X) is the probability of a 

feature appearing in an image. Therefore, X is the feature array and C is the current testing image. 

So the equation could be expressed as: 

              
                

          
 

 

Or as the following in plain English: 

           
                 

        
 

 

Unlike the previous two classification functions, the Naive-Bayes does not plot each of the training 

feature vectors as data points in some high-dimensional space. Instead, the Naive-Bayes classifier 

stores probabilities for each feature in a look-up table, such as the probability that the current 

feature is present within some image, given that the image is object. It also keeps count of how 

many of the training images are object, and how many are non-object - storing this also as a 
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probability. An example of this can be seen in Figure 8. Once a look-up table has been generated for 

each feature, the Naive-Bayes classifier has been learned. 

As with the other classification functions, the system will generate the testing image's representative 

feature vector. The system then uses the Naive-Bayes classifier to predict the identity of the current 

testing image by plugging the constructed feature vector into some classification function, f(X). It is 

then the job of this function to return one of two values: 0 or 1. 

Different from learning the Naive-Bayes classification function, the prediction phase is more trivial. 

Once the testing image's representative feature vector has been computed, we just grab the needed 

probabilities from each features' look-up table. However, we do not grab just the one value, we 

need to extract two values from each features' look-up table. If a feature is marked as being present 

within the testing image, then we need to extract the probabilities that the feature is present within 

an object image or a non-object image (the same applies to a feature being absent). After this, we 

use the following equation to calculate the required probabilities, 

                             

 

   

 

Where Ci is the current testing image, x is a feature and n is the total number of features. 

With this equation, we can calculate the total probability of the current image being object. This is 

done by multiplying together all of the feature probabilities extracted, that represent the feature 

being either present or absent within an object image,         . Finally we multiply that value with 

the total probability of seeing an object image,      . The same process is then undertaken for 

calculating the probability of a non-object image. We now have two probabilistic values, one that 

shows the probability of the current testing image being object, and the other for it being non-object. 

The final stage is to compare these two values, 

      
                         

                         
  

If the probability of the testing image being object is greater than the probability of it being non-

object, then the classification functions, f(x), returns a value of 1, as the image is to be predicted as 

being object. 0 is return otherwise, meaning non-object.  
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7. Experiments 
Throughout this section we shall discuss the different experiments that were used, in order to 

compare the different classifiers and methods transcribed so far. Before any results can be discussed, 

we will first explain the setup used for the experiments. This is to help explain how the graphs were 

generated and how the accuracies were obtained, and is discussed in subsection 7.1. In the second 

part we will be going over the main recognition procedure. We will be looking at the performance of 

the combination of the different classifiers whilst either varying the number of features extracted, or 

varying the window size. 

 

7.1. Experimental Setup 

As mentioned previously, the aim of this paper is to discuss and compare a total of six different 

classifiers. There are the three main classification functions that we will be using; kNN, SVM and 

Naive-Bayes. As well as the two methods discussed; feature variance and window-size variance, that 

will be combined with each of these functions. Using these six classifiers, the overall task is to try an 

detect faces within images, where the face takes up most of the image. All of the images used are in 

greyscale and are of size 92x112 pixels; there are 100 of them in total - 50 object images of faces, 

and 50 non-object images that do not contain a face. 

With this, 90% of the images were formed into the training set. This was then further split down, and 

20% of these images created the pre-training set with the other 70% creating the actual training set. 

The final 10% images were used for testing. For each set, a 50/50 split was kept, where 50% of each 

was object and the other 50% was non-object. 

For each classifier, Normalized cross-correlation and thresholding was used to generate the required 

statistical model. The threshold value used, to see if a given image contained the current feature, 

was arbitrarily chosen to be 0.9. The value of k for the kNN was chosen to be 5. 

The performance of each classifier was estimated by using cross-validation. We repeatedly trained 

and tested the classifiers on independent datasets (pre-training, training and testing), and then 

reshuffled everything on each iteration. Therefore, everything was completely random as to 

eliminate over-fitting. In total, 10 cross-validation iterations were performed, and the results 

obtained were used to generate the ROC curves and Accuracy graphs presented in 7.2. 

The program was coded into Matlab, and when run on a computer with a 2.7GHz Intel Quad Core 

processor, the computation time took several hours. To select and extract the features from pre-

training was almost instantaneous. The bottleneck for the program was constructing the statistical 

model for training, and the feature vectors for testing. This was due to the normalized cross-

correlation as it needs to scan the feature over the whole image and compute the likelihood that the 

two portions are equal. Obviously the fewer features we have, the faster the program runs; which 

can be as little as 15 minutes all of the way up to approximately 20 hours. 

7.1.1. Feature Variance based Classifiers 

For this classifier, the number of features that were extracted from each pre-training image was 

varied. In total there were exactly 20 images (10 object and 10 non-object) that formed the pre-

training set, and the number of features that were extracted from each image was varied between 1 
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to 20. Therefore, the classifier had to make predictions on the testing set either using only 20 

features or up to 400 features. Each feature was of a window size 24x24 pixels, and were selected 

and extracted randomly.  

The remaining 40 object and 40 non-object images were used for training and testing. 35 object and 

35 non-object image were selected at random to be used for training, with the remaining images to 

be used for testing the classifier. Normalized cross-correlation and thresholding was used to 

construct a binary matrix at the training phase for a statistical model, using the training images and 

extracted features. 

7.1.2. Window Variance based Classifiers 

The next set of classifiers all had the number of features extracted from the pre-training images 

fixed. Instead, we varied the size of each of the features. In the previous classifier, the features all 

had a fixed window size of 24x24, however, for these classifiers the window size for each feature will 

vary from size 2x2 to 60x60. With the number of features being extracted being fixed at 10 - so 200 

features in total, as the size of the pre-training set is still 20 images. 

Again, at each iteration of the cross-validation, we used 35 object and 35 non-object images to learn 

the classification function. With the remaining 5 object and 5 non-object images being used for 

testing this obtained classification function. At each iteration of the cross-validation, each of the 

datasets were reshuffled. 
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Figure 9: Accuracy graph for varying  the total number of features 

Figure 9: Accuracy graph for the feature variance classifiers, using a kNN, SVM and Naive-Bayes classifiers. As more 

features are extracted, the accuracy of each classifier increases; drastically so between 2-4 features extracted from each 

image. In some ways, we can see that varying the number of features does not affect a SVM or Naive-Bayes, as their curves 

are virtually the same - yet still different from that of the kNN. 

 

7.2. Classification Results 

The classification results for each of the classifiers will be presented by firstly accuracy graphs, 

depicting how the accuracy of each of the classifiers varies depending on the number of features, or 

the size of the features extracted. Finally, we shall see the results then presented in the form of 

Receiver Operating Characteristic (ROC) curves, which will be explained in more detail after the 

accuracy graphs. 

7.2.1. Accuracy Graphs 

Accuracy graphs are used to show how the accuracy of the classifier changes as we alter certain 

variables. The higher the curve is the better, with 100% indicating a perfect classification across 

every iteration from cross-validation. Figure 9 shows the accuracy graphs plotted for each classifier 

when we vary the number of features that are extracted from each pre-training image. We varied 

the number of features extracted from each image from 1 through to 20 in steps of 1; total number 

of features would be from 20 through to 400 at a window size of 24x24. Every time we incremented 

the number of features extracted, cross-validation was run 10 time to calculate the average 

accuracy; this was then used to generate the presented graph. 

The graph shows exactly what you would more or less expect, as we increase the total number of 

features, the overall accuracy increases on all classifiers. When we extract between 1 to 3 features 

from each image, the accuracy of classification drastically increases, but after a while it appears to 

level out, only increases very slowly. We can also see that at certain points, the accuracy of the 

classifiers seems to spike or drop randomly, and this it trivial as to why. You have to remember that 

everything we are doing is completely random. At every iteration of cross-validation we randomly 

reshuffle the images around. So that the new iteration has a different pre-training, training and 

testing set. On top of this, we also re-extract the features again, and these features  
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Figure 10: Accuracy graph for varying window sizes 

Figure 10: Accuracy graph for the window-size variance classifiers, using a kNN, SVM and Naive-Bayes classifiers. We 

can see that the peak of accuracy is with a window size between 10x10 and 20x20. Any smaller or larger than this results in 

the classifiers merging towards to 50% accuracy. This 50% accuracy is achieved when we classify every test image as being 

non-object. Since there are 50% object and non-object test images, a 50% accuracy is achieved. 

 

themselves are random too. Whenever the accuracy of classifier spikes, it means that the features 

extracted from pre-training have been informative, that is, the features hold informative information 

about the class that they have been extracted from. Conversely, when the accuracy drops, it is the 

opposite effect taking place. A spike in accuracy can be clearly seen when we extract 11 features 

from each image, and test accuracy using a kNN classifier. 

Figure 10 shows the accuracy graphs plotted for each classifier when we vary the window size of 

each feature that is extracted from each pre-training image. We varied the window size of each 

feature from 2x2 through to 60x60 in steps of 2x2, with the total number of features extracted from 

each image being 10 (200 total). Every time we incremented the window size of the features, cross-

validation was run 10 time to calculate the average accuracy; this was then used to generate the 

presented graph. 

Displayed within the graph is again what you would expect. As the window size of each feature is 

gradually increased, the overall accuracy of the classifiers decrease, and drastically so between the 

window sizes of 35x35 to 60x60; where at 50x50 onwards the classifiers appear to merge. In fact, 

this is the case. As the window size approaches the full size of the images, then accuracy will 

eventually level off at an accuracy of 50% for all classifiers. The reason as to why the accuracy drops 

so drastically is as follows: as the features increase in size, then they are more prone to noise, such 

as background imagery. Therefore they lose the ability to focus in on what is really important. If a 

feature is of a whole house, then is it possible for a similarity-based measure like the normalized 

cross-correlation to generate a high correlation coefficient when it is compared to a face image - so 

the object image is predicted as non-object. Conversely, the smaller the feature is in size, the better 
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Figure 11: Example of a ROC table 

Figure 11: Example of a ROC table. Here '1' represents an image that is object, and '0' and image that is non-object in the 

actual columns. '1' and '0' in the predicted rows represent what the classifier has predicted the image as being. 

 

 the performance of the classifiers. This can be clearly viewed on Figure 10 between the window 

sizes of 10x10 and 20x20, where accuracies of up to 94% are obtained on both the SVM and the 

Naive-Bayes. This high accuracy is because the features are of the 'correct size'. They are of a perfect 

size to store just the right information for the classifiers, and barely have any noise affecting them. 

On a final note, we also see that between the window sizes of 2x2 and 10x10, the accuracies start of 

very low and then dramatically increases. Just like when a feature can be too big, it is also possible 

for a feature to be too small. Unlike with large features which are prone to noise, small feature 

contain barely any information of use about the classes that the classifiers could use. 

7.2.2. ROC Curves 

When we look at the results generated from a classifier, there are two important details that we are 

interested in. These details are that classifier must have a low false alarm rate and a high sensitivity 

(or hit detection rate). A ROC curve represents the ability of a classifier combining both of these 

constraints. The higher the curve is, the better the classifier is. So the closer a classifier is to having a 

false alarm rate of 0 and a sensitivity of 1, the better it is. Therefore, a perfect classifier would have a 

false alarm rate of 0 and a sensitivity of 1. To generate each of the presented curves, the results at 

each iteration of cross-validation were summed and then averaged. These results come in the form 

of true positive, true negative, false negative and false positive, and are what we use to calculate the 

false alarm rate and sensitivity. Here, the four values mean: 

 True Positive  :- Ability of the classifier to classify an object image as being object. 

 True Negative  :- Ability to classify non-object images as being non-object. 

 False Negative :- Falsely classify an object image as being non-object. 

 False Positive :- Falsely classify a non-object image as being object. 

These four values are stored in a ROC table, exampled in Figure 11. The table is generated by 

checking to see if a testing image's predicted label equals its actual label. If its actual label is '1' and 

its predicted label is also '1', then we increment the true positive value. Another case could be if the 

images actual label is '1' and its predicted label is '0'; here we would increment the false negative 

value as we have falsely classified something that is object as being non-object. 

We proceed to use these four values to calculate the corresponding sensitivity and false alarm rates. 

Sensitivity, as previous mentioned is a measure of the hit rate, which shows how many of the object 

test images the classifier has correctly identified as being object among all of the object test 
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Figure 12: ROC curve for varying the total number of features 

Figure 12: ROC curve generated for the classifiers that have their total number of features varied, using a kNN, SVM and a 

Naive-Bayes classifier. Here the Naive-Bayes and SVM classifiers have a significantly higher curve than that of the kNN 

classifier. The curves here take a long time until they converge to a 100% detection rate. 

 

 images available. Whereas the false alarm rate measures the amount of incorrect object results that 

occur (how many non-object test images have we classified as being object) among all of the non-

object test images available. Sensitivity is calculated as follows: 

            
  

       
 

We take the total number of correctly identified object images (true positive), and divide it by the 

total number of  object test images used (true positive + false negative). Conversely, the false alarm 

rate is calculated as follows:  

                 
  

       
 

Here we take the total number of incorrectly identified object images (false positive), and we the 

divide it by the total number of non-object test images used (false positive + true negative). 

The graph represented in Figure 12 is the ROC curve generated for the feature variance classifiers. 

Here we vary the total number of features extracted, and we can see that an SVM classifier 

outperforms the other two classifiers. For example, if we look at a 10% false alarm-rate, then the 

detection rates for a kNN classifier is around 78%, for a Naive-Bayes classifier it is around 77%. 

Whereas for a SVM classifier, the detection rate at a 10% false alarm-rate is over 90%. The red line 

illustrated in the presented graph is what is known as a random guess line. The closer a curve is to 

this line the worse. If a curve is on the line (or below it, which is something we really do not want), 

then we say the classifier has performed poorly. 
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Figure 13: ROC curve for varying the window size 

Figure 13: ROC curve generated for the classifiers that have the window size for their features varied, using a kNN, SVM 

and a Naive-Bayes classifier. The kNN and SVM curves are significantly higher than the Naive-Bayes. Another detail to 

observe, is that the curves quickly converge to a 100% detection rate, except for the Naive-Bayes curve. 

 

In Figure 13 we vary the window size of each feature. Here we can see that the SVM and the kNN 

classifiers outperform the Naive-Bayes classifier quite significantly. If we look at the detection rates 

from a false alarm-rate of 10%, then we see that the detection rate for a kNN classifier is around 

94%, which is a significant improvement in performance compared to the corresponding kNN 

classifier when we vary the number of features extracted. For a Naive-Bayes classifier the detection 

rate is around 84%. The SVM classifier outperforms them though with a detection rate of over 98% 

at a 10% false alarm-rate. 

At first glance it is clear to see that the window size variance scheme performs better than the 

scheme using the feature variance. This is because the curves in Figure 13 are not only higher than 

the ones in Figure 12, but also because they converge to a 100% detection rate faster. Meaning that 

the classifiers accurately identify all of the object images as being object. Whereas with the feature 

variance classifiers, this convergence is very slow. Therefore we can safely assume that in order for 

these classifiers to converge faster, we are required to extract more features from the pre-training 

phase. We can also see that in both methods, a SVM performs significantly well in identifying object 

images; whether we are varying the total number of features or the window size of those features. If 

we were not using a SVM classifier, then we can see that a kNN classifier is best to use when varying 

the window size; its performance is far better than that of the Naive-Bayes. Where as a Naive-Bayes 

classifier is the best choice when varying the total number of features, far outperforming that of the 

kNN. 
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8. Conclusions and Future Work 
We have presented an approach, and compared multiple classifiers when trying to identify human 

faces contained within greyscale images. Features were randomly extracted from a set of pre-

training images. During this feature extraction process we varied either the total number of features 

that were to be extracted at a fixed window size, or varied the window size of each feature that was 

extracted. These features were then used to learn three classification functions - a kNN, SVM and a 

Naive-Bayes. The learned functions were then tested, with their results being presented in the form 

of Accuracy graphs and ROC curves. 

From the results that were presented, we can see that there exists a possible linear split between 

the two classes of face and non-face. This indication is proved from the results of the ROC curves for 

a Linear Support Vector Machine, which achieves detection rates of over 90%. 

We have also discovered the trade-offs for either varying the total number of features extracted, or 

varying the window size of the features. The trade-off for varying the number of features is obvious; 

as we increase the number of features extracted then overall accuracy of the classifiers increases, 

but this accuracy will soon level off - or appear too, except it is increasing very slowly. The trade-off 

for varying the window size of the features is if we start off with a feature being the size of the 

whole image, then the accuracy achieved will be 50%. As we begin to decrease the size of the 

features, this accuracy starts to increase, and will peak at a certain point - which we found to be 

between 10x10 and 20x20 for images of size 92x112. However, as we shrink the features beyond this 

point, accuracy drastically decreases until we reach the 50% accuracy mark again. 

This work can be extended in several directions. One direction could be to see how same approach 

works on different classes, for example car and non-car images. Here we could try and detect the 

sides of cars within images like in [1, 11]. Another direction that we could extend into is something 

that was originally going to be done, but time was running low. This direction would be this: 

currently we are extracting random features from some pre-training set, these features can be 

either informative or non-informative. So what if we were to again, extract random features from 

some pre-training set, but this time we filter the acquired features for only the informative ones. 

This could be done with something like the AdaBoost algorithm, explained in [23], and will require 

more features to be extracted. Other classification functions could also be implemented, to see how 

their accuracies would fair. Such as a decision tree like in [12] or a Tree Augmented Network, like 

that implemented in [1]. 
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