
Face Detection using Random

Features

A Third Year Final Project Report by

 Matthew Kelly

Supervisor: Gavin Brown

The University of Manchester

School of Computer Science

B.Sc. (Hons) Computer Science

May 2011

2

Face Detection using Random Features
A Third Year Final Project Report by Matthew Kelly

Supervisor: Gavin Brown

The University of Manchester

School of Computer Science

B.Sc. (Hons) Computer Science

May 2011

Abstract
In this report we present an approach for learning to identify human faces contained within greyscale images.

We randomly extract features from a set of pre-training images that contain either informative or non-

informative information about the object of interest. During this feature extraction process we vary either the

total number of features that are extracted with a fixed window size, or we vary the window size of each of the

features that is to be extracted. These features are then used to learn three classification functions. The

learned functions will then be tested on images to see if they contain a face or not, and these experiments are

reported. We show that even with random features that may contain no information about the object of

interest, we can achieve high detection accuracies. Images used either contain a front view of a person's face,

or an image of a object that is not a face.

Acknowledgements

Gavin Brown for being an encouraging, guiding and above all patient supervisor. As well as an inspirational

lecturer for sparking my interest into Machine Learning.

AT&T for their dataset of face images, which is where the majority of the images I have used come from, in

particular all of the face images.

3

Table of Contents
Abstract .. 2

Acknowledgements .. 2

Table of Figures ... 4

1. Introduction .. 5

1.1. Related Work ... 5

1.2. Overview of the Approach ... 5

2. Random Features and Window Sizes .. 7

2.1. Feature Selection and Extraction ... 7

2.2. Varying Window Sizes .. 8

3. Training the System .. 9

3.1. Matching by Normalized Cross-Correlation ... 9

3.2. Thresholding and constructing a Binary Matrix.. 9

4. Classification by Non-linear Separation .. 12

5. Classification by Linear Separation.. 13

6. The Naive-Bayes Classifier .. 15

7. Experiments .. 17

7.1. Experimental Setup .. 17

7.2. Classification Results .. 19

8. Conclusions and Future Work ... 24

9. References .. 25

4

Table of Figures
Figure 1: Visual example of pipeline ... 6

Figure 2: Example of image dataset .. 8

Figure 3: Example of possible features ... 8

Figure 4: Correlation Coefficient matrix .. 9

Figure 5: Example of a binary matrix .. 10

Figure 6: Example of a kNN classifier .. 12

Figure 7: Example of a SVM classifier.. 13

Figure 8: Example of Naive-Bayes look-up table ... 15

Figure 9: Accuracy graph for varying the total number of features ... 19

Figure 10: Accuracy graph for varying window sizes ... 20

Figure 11: Example of a ROC table .. 21

Figure 12: ROC curve for varying the total number of features .. 22

Figure 13: ROC curve for varying the window size .. 23

5

1. Introduction
Face detection is the task by where we try to identify whether or not some given image contains a

human face. However, this task is not as simple as it sounds, and has even been proven to be

difficult in [6, 7]. The reasons as to why face detection is so hard is that no two faces are identical,

and there will always be variations in their appearance and posture; such as faces that are wearing

glasses, have facial hair and the difference in skin contrast (some people's skin is light and some are

dark).

In today's world we are surrounded by gadgets that will most certainly have some sort of feature on

them that involves the detection of something through a camera. Many of today's mobile phones

have either face detection or smile detection to automatically shoot a photo, or to help with auto

focusing. Other applications are for biometrics, video surveillance [9], and funding is also being

placed into research for energy conservation with TVs [10]; where if the TV detects that there is not

a face directly looking at its screen in the room, then it turns itself off.

To achieve this, we adopt Machine Learning techniques [8] to learn a classification function, and

then we test this function on a set of unseen images to see how accurate it is, and to work out its

trade-offs. In this paper we discuss six different classifiers: three classification functions combined

with two different methods of feature selection and extraction (see subsection 2.1). The first

method we shall see is varying the number of features that we extract from training images. Where

the second method is varying the size of each of the extracted features. The classification functions

applied in this paper are the k-Nearest Neighbour, Linear Support Vector Machine and Naive-Bayes

Classifier algorithms. At the end of this report we shall see which classification function is most

suited to each method, as well as what the trade-offs are for the two different methods when it

comes to accuracy.

Unlike other research papers which use more informative features, you will see here that we are

using completely random features. This is to see how well different classifiers can fair, when they are

not being given specific features to look for when attempting to identify faces within a given image.

1.1. Related Work

The majority of this paper is based on the work done in [1] and some parts of [11], however here we

use more low-level features. There have been several approaches done that all use low-level

features, such examples are [3, 12, 14], where [12] uses edge type features combined with a

decision tree for the classification of faces. Conversely, there are the approaches that use higher-

level features, or informative features, such as in [1, 5, 6, 11, 13, 15]. Here, [15] uses the simplest of

all classification functions, a k-Nearest Neighbour classifier, whilst generating a low dimensional

subspace from an Eigen-face basis.

1.2. Overview of the Approach

The following gives a quick outline as to the approach that was used. This approach uses certain

aspects from [1], but is very closely based on the approach used in [11] and consists of four phases.

6

Figure 1: Visual example of pipeline

Figure 1: Visual example of the pipeline used. The input Image Dataset is the set of all images used throughout the system.

We then extract some of the images for the Feature Extraction phase. A different set of images is then used for the Image

Representation and Learning the Classifiers phases, which are contained within Train Classifier. Finally, the remaining

images are used for Testing the Learned Classifiers.

1. Random Feature Selection and Extraction

In this first phase of the system, we need to randomly extract portions, or image patches,

from a set of given images. Each of these image patches are used to help represent other

images of the same class, and to help learn the classifiers in the following phases.

2. Image Representation by Binary Matrix

Using the image patches that we just extracted, we need to construct a binary vector for

each input image of a different set to that of the ones in the previous phase. This vector is

formed by comparing each image patch against each input image using a similarity-based

measure. This vector allows us to represent each input image in terms of the image patches.

Combining all of the generated binary vectors together gives us a binary matrix.

3. Learning the Classifiers

Following on from the previous phase, each of the given input images are now represented

as binary vectors, with some label that tells the system if the image is object (contains a

face) or non-object (does not contain a face), meaning the system has some prior knowledge

about these images. Each of these vectors are plugged into some classification function that

learns whether to classify some other given image as being object or non-object.

4. Testing the Learned Classifiers

In this final phase, we now use a different set of input images again, constructing binary

vector in the same way as before for each image and by using the same image patches.

Except this time, there is no label telling the system what class each image represents. This

time the system must predict that label itself, using the previously learning classification

function. We use the results obtained here to generate accuracies and graphs to better

demonstrate their trade-offs.

Figure 1 shows a visual representation of the approach, in what is known as a pipeline.

The rest of the paper is organised as follows. In section 2 we describe the feature selection and

extraction process more thoroughly. In section 3 we discuss the image representation process, as

well as a more detailed look at how we train each of the classifiers. Sections 4, 5 and 6 explain each

of the classification functions used, in detail. Section 7 describes the experiments that were

performed, with results, and section 8 concludes the report with a conclusion and summary.

7

2. Random Features and Window Sizes
Many of the more recent recognition systems all use a similar technique to recognise different

objects. This technique is to extract class specific image patches as features to help train and test a

recognition system. In most systems, these image patches contain informative information about

the object that they have been extracted from, and there are numerous ways to do this, such as

Eigen-patches in [15].

However, unlike the recent systems of today, the methodology discussed within this paper will be

using completely random image patches, instead of using informative image patches like other

systems. In the following subsections, we first introduce a scheme used for extracting our image

patches as used in [1]. The feature selection and extraction process is explained in subsection 2.1.

We then describe another method, by where we vary the size of each of the image patches in

subsection 2.2.

2.1. Feature Selection and Extraction

In this section, we are first going to outline the process that is used to select the image patches that

we are going to use for the classification process during training, and then we describe the process

of how we go about extracting them. Before this, however, a bit of terminology is to be explained.

Features: So far we have been using the word image patches. In general, image patches and features

are exactly the same thing. A feature is a portion of an image that contains some information about

that image. For example, if we were trying to recognise a car from an image, then a feature of this

car image could be something like its tyre. If we then tried to use this same feature to recognise an

image of a chair, then it would fail. This is because the car tyre is a class specific feature that will only

describe the class that it came from - in this case, a car.

In the terminology above, the feature described would have been an informative feature, because

the feature would have contained maximal information about its class. In this paper, we are using

random features which will rarely contain important information about its class.

The idea here is to select features that are class specific, and may or may not convey maximal

information about its class. Selected features will all be of the same size, and the same number of

features will be selected and extracted from each image in the pre-training set. The pre-training set

follows the same idea as introduced in [1]. At the beginning, there will be some set of all images

where 50% of them are object (contain a face), and the other 50% are non-object (do not contain a

face). The pre-training set is a set of images that will contain 10% of object and non-object images,

and will be completely separate from the training and testing sets. Normally, a system would select

and extract its features from the training set.

Features are selected by randomly generating two values, one value is the x-coordinate and the

other is the y-coordinate. Each value is restricted between 0, and the height/width of each image

minus the size of a feature. Once we have the x- and y-coordinates, the feature is then extracted

from the current image by cropping the image around it. The extracted feature is then stored inside

of a feature array for training the system later, where each feature itself is in turn represented by an

array of pixel values.

8

Figure 2: Example of image dataset

Figure 2: Examples of face and non-face images used during the training and testing phases. Each image is 92x112 pixels.

Figure 3: Example of possible features

Figure 3: Examples of random features that may be extracted by the system. Each feature here is 24x24 pixels. As features

are selected randomly, then we get both informative and non-informative features, such as the first feature in this example

set, and the final feature respectively.

Once we have extracted the features from each image in the pre-training set, we then move on to

the actual training phase. No more processing is to be done to the features, as we want them to be

completely random and unaltered - as well as the fact that we are not interested in only having

informative features for training.

Figure 2 shows a subset of the images that were used during the face detection experiments for

training and testing, while Figure 3 shows some of the possible features that can be extracted by the

system. Here you will notice that some of these features are informative, while some of them

contain no information about the class it is trying to represent. For example, the first two example

features presented clearly hold very specific information about the face class (eye and part of a

mouth) that will help the system to later predict faces within images. However, the final two

features do not really hold any real important information of use at all; the final feature itself is

trying to represent that of a non-face class image of a house, but here it looks like we could have the

top of a person's forehead or even just the background.

2.2. Varying Window Sizes
In the previous subsection we discussed the selection and extraction process for features. In this section

the technique is more-or-less the same, except we will be using different sized features.

Unlike before, where we extracted x features from y images with a fixed size w, this time we will be

extracting a fixed number of features x' from y images with a varying size w'. When we extract a feature

from an image in the pre-training, we call the size of the feature the window size, as we are only looking

at a portion of the image as if we were looking through a window.

The selection and extraction process are exactly the same as before, except this time we are using

different window sizes. Therefore, during the classification process, we use one of two techniques with

different classifiers; either were vary the number of features extracted from each pre-training image or

we vary the size of each feature extracted from each image to test accuracy on classification.

9

Figure 4: Correlation Coefficient matrix

Figure 4: This is an example of a correlation coefficient matrix. Values can range between -1.0 to 1.0. The closer the value

is to 1.0, the higher the probability of the two image regions matching. Here the highest coefficient is 0.9, so it is very likely

that this image contains the proposed feature.

3. Training the System
In this section, we are going to outline the training process used after feature selection and

extraction. Once every feature has been extracted, we will have obtained a feature array containing

all of the random features that the system has extracted for us. On its own, this array means nothing

to the system, so we need to construct a more meaningful data structure for the system.

First, we discuss how to see if an image contains one of the features in subsection 3.1, then we

explain in detail how this information is used to construct what is known as a binary matrix in 3.2.

3.1. Matching by Normalized Cross-Correlation

There are many ways to see if a feature is contained within some image, and one of these methods

is to use normalized cross-correlation. This function takes as input two matrices, one matrix is the

actual training image itself, and the other is one of the features. What normalized cross-correlation

does is take the feature and scan it across the training image. At each position, it will compute a

correlation coefficient which tells us the likelihood of the feature matching the current portion of the

training image. This forms a matrix of correlation coefficients between the values of -1.0 and 1.0.

The normalized cross-correlation algorithm that we use closely follows that of [5],

where,

 f is the training image.

 t is the template (feature).

 is the mean of the feature.



 is the mean of f(x,y) in the region under the feature.

An example of a correlation coefficient matrix is show in Figure 4.

3.2. Thresholding and constructing a Binary Matrix

In the previous subsection, we discussed in detail how to construct the correlation coefficient matrix

by using normalized cross-correlation. This matrix holds more useful information for the system,

10

Figure 5: Example of a binary matrix

Figure 5: An example of a binary matrix with its corresponding identity vector. Here you can see clearly that each row of

the matrix represents an image, and each column a feature. In the matrix a 1 represents that a feature in present within the

image, a 0 stating that it is not. In the identity vector, a 1 represents an object image, a 0 a non-object image. Each row is

also known as a Feature Vector.

than that of the feature array, yet it is still conveys no actual information on its own. In this part we

will be describing the process of generating a binary matrix, which is something the system can

understand perfectly, and is the final product of the training phase.

In Figure 4 we presented a visual representation of the correlation coefficient matrix. This was

constructed after one run through of normalized cross-correlation, using some feature and some

training image. The problem is that we still do not know if that training image contains that feature,

and this is where thresholding comes in. The threshold is some arbitrary value that says:

"If some given value is greater than the threshold value, then we accept the given value. Otherwise

we ignore it."

Thresholding is a technique that is usually used with Perceptrons, as in [19, 20]. However, the same

idea can be used here. Firstly, we extract the highest coefficient value from the correlation

coefficient matrix. With this value, we then compare it to some threshold value. If the highest

coefficient value is greater than or equal to the threshold value, then we return a 1, else a 0 is

returned.

Therefore, a 1 represents that the current training image contains the current feature, where as a 0

represents that the current feature is not contained within the current training image. As previously

stated, this process is repeated for each feature for each training image, such as:

11

Because of this, a binary matrix is generated which is an array of rows and columns. Each row

represents each training image, and each column represents each feature, as shown in Figure 5.

More formally, each row of the binary matrix is of the form F = [F1, ..., Fn], this is a feature vector, and

it represents each image in feature space. All together, these feature vectors form a binary matrix, or

a statistical model.

Each of these feature vectors, in the statistical model, can then be used to plot data points. For

example, if we have a feature vector of the form [2,3,4], then this references a data point in 3-

dimensional space at position [2,3,4]. Since feature vectors can contain many hundreds of values, we

say that these data points are plotted in high-dimensional space on some hyper-plane.

During the construction of the matrix, another vector is also being generated. This vector is an

identity vector, and it corresponds to each row within the matrix. The identity vector tells the system

what type of image each row in the matrix represents, a 1 in the vector tells the system that the

current row represents an object image, a 0 a non-object image. We have this corresponding

identity vector because the training set is a set of seen cases, such that the system has prior

knowledge about the images, unlike with the testing set, which is a set of unseen cases.

12

Figure 6: Example of a kNN classifier

Figure 6: Example of a kNN classifier. Here we are trying to predict the identity of the data point shaped as a triangle, is it

a square or a circle? If we assume that k=3, then we see that we have two data points labelled as squares, and one labelled

as a circle. Therefore, squares win the majority vote, and the triangular data point is predicted as being a square.

4. Classification by Non-linear Separation
Once the system has been trained, and the statistical model (binary matrix) has been constructed,

we can test the system on images that it has not previously seen, and must predict what classes it

thinks they are from. In this section, and in the following two sections, we will discuss the three

classification processes that are used during the testing phase. Outlined in this section is the non-

linear separation classifier known as a k-Nearest Neighbour (kNN).

During the classification process, the system constructs a binary vector which represents each image

in feature space, also known as a feature vector. The process to do this is exactly the same as during

the training phase, only this time the system does not generate a corresponding identity vector. This

is because the system has no knowledge as to what class each of the testing images represent. It is

the identity of the current image that the system is going to predict, using the statistical model

created during training.

The system predicts the identity of the current image by plugging the constructed feature vector

into some classification function, f(X). It is the job of this function to return one of two values: 0 or 1.

Here, the two binary values have the same meaning as before, 1 is for object images, and 0 is for

non-object images.

The kNN classification function works by measuring the Euclidean distance between the testing data

point from the testing feature vector, to every other data point from the statistical model. The

Euclidean distance is calculated as follows, where x is the feature vector for the testing image, and y

is some feature vector from the statistical model:

We use this equation to calculate the distance from the current testing data point to all other data

points. The closest k points with minimal distance are observed, and the predicted identity for the

current test point becomes the identity label that has the mass majority from the k points as shown

in Figure 6. k is normally selected as an odd value to stop collisions. A more detailed description of

kNNs can be found in [4, 15].

13

Figure 7: Example of a SVM classifier

Figure 7: Example of a SVM. Here we have two different classes represented by circle and square data points. The bold

centre line running through the middle of the points is the 'decision boundary', and clearly separates the two classes. The

two outer lines are the boundaries of the margin - the filled in data points being the support vectors.

5. Classification by Linear Separation
In this section we outline the linear separation classifier known as a Linear Support Vector Machine

(SVM). This is the second classification function used, and is different from the previous kNN

function. A Linear Support Vector Machine assumes that the data is linearly separable. If we have

numerous data points plotted onto a 2-dimensional plane, then there will be some line that will cut

through all the data points, almost perfectly separating the two classes as demonstrated in Figure 7.

This same assumption also works for higher dimensional spaces, except the line becomes a (hyper)

plane - generally known as a decision boundary.

The decision boundary can be placed into multiple positions using weights that are calculated during

the training phase; so we use a margin to maximise the distance between the decision boundary and

the data points either side. To calculate the width of the margin we use the following equation,

Where W is the array of weights. Once the Maximum Margin Surface (MMS) has been found, then

this is the decision boundary that we use. For further terminology, the data points the maximal

margin touches against are known as support vectors. A more detailed description of SVMs can be

found in [2, 20, 28].

An SVM predicts the identity of the current testing image by plugging the generated feature vector

for each testing image into the SVM classification function, f(x). Similar to the kNN, this function

predicts the identity of the testing image and returns either a 0 or 1.

The simplest way to explain how a SVM predicts the identity of the current image is as follows. Once

the classification function has the testing feature vector, it then generates a data point

corresponding to where the vector points to in a high-dimensional space. Depending on where this

data point is, the SVM will work out which side of the decision boundary it is on. If the data point is

on one side, then the point represents an object image, otherwise it is on the other side and

14

corresponds to a non-object image. Working out which side represents which class is calculated

during training, whilst the margin is also being calculated. In general, the support vectors that the

margin pushes up against will be of one class on one side, and of the opposite class on the other.

That is, if there are two support vectors on one side, then they will most certainly be of the same

class. But this is not always true.

15

Fi
Object Non-

Object

0 1/2 0/1

1 1/2 1/1

Figure 8: Example of Naive-Bayes look-up table

Figure 8: Example of a look-up table generate for one feature and with three training images. '1' and '0' in the first column

represent whether or not the feature is present in the training image. Two of the images were object, the remaining images

being non-object. If we look at the [1-Object] pairing, then we see that only one of the two object images contains this

feature, so there is a 50% probabilistic chance of this feature being contained within an object image. Finally, there is a 2/3

probability of seeing an object image, and 1/3 probability of seeing a non-object.

6. The Naive-Bayes Classifier
In this section we outline the Naive-Bayes Classifier (NB). This classification function is similar to a

kNN classifier, as it also assumes that the data it non-linear. However, it is also different from the

previous two, as it acts naively towards the given data. By this, we mean that it assumes that all

features are independent from one another. So just because an image contains one non-object

feature, it does not mean that it will contain the following non-object feature. The following

description is closely based to the description of a Naive-Bayes classifier that can be found in [21, 26].

The Naive-Bayes classifier represents each class with a single probabilistic summary. This

probabilistic summary is calculated by using the Bayesian Rule as follows:

Here, P(C) is the probability that the current image is an object image, P(X|C) is the likelihood that

the current feature is object given that the current image is object, and P(X) is the probability of a

feature appearing in an image. Therefore, X is the feature array and C is the current testing image.

So the equation could be expressed as:

Or as the following in plain English:

Unlike the previous two classification functions, the Naive-Bayes does not plot each of the training

feature vectors as data points in some high-dimensional space. Instead, the Naive-Bayes classifier

stores probabilities for each feature in a look-up table, such as the probability that the current

feature is present within some image, given that the image is object. It also keeps count of how

many of the training images are object, and how many are non-object - storing this also as a

16

probability. An example of this can be seen in Figure 8. Once a look-up table has been generated for

each feature, the Naive-Bayes classifier has been learned.

As with the other classification functions, the system will generate the testing image's representative

feature vector. The system then uses the Naive-Bayes classifier to predict the identity of the current

testing image by plugging the constructed feature vector into some classification function, f(X). It is

then the job of this function to return one of two values: 0 or 1.

Different from learning the Naive-Bayes classification function, the prediction phase is more trivial.

Once the testing image's representative feature vector has been computed, we just grab the needed

probabilities from each features' look-up table. However, we do not grab just the one value, we

need to extract two values from each features' look-up table. If a feature is marked as being present

within the testing image, then we need to extract the probabilities that the feature is present within

an object image or a non-object image (the same applies to a feature being absent). After this, we

use the following equation to calculate the required probabilities,

Where Ci is the current testing image, x is a feature and n is the total number of features.

With this equation, we can calculate the total probability of the current image being object. This is

done by multiplying together all of the feature probabilities extracted, that represent the feature

being either present or absent within an object image, . Finally we multiply that value with

the total probability of seeing an object image, . The same process is then undertaken for

calculating the probability of a non-object image. We now have two probabilistic values, one that

shows the probability of the current testing image being object, and the other for it being non-object.

The final stage is to compare these two values,

If the probability of the testing image being object is greater than the probability of it being non-

object, then the classification functions, f(x), returns a value of 1, as the image is to be predicted as

being object. 0 is return otherwise, meaning non-object.

17

7. Experiments
Throughout this section we shall discuss the different experiments that were used, in order to

compare the different classifiers and methods transcribed so far. Before any results can be discussed,

we will first explain the setup used for the experiments. This is to help explain how the graphs were

generated and how the accuracies were obtained, and is discussed in subsection 7.1. In the second

part we will be going over the main recognition procedure. We will be looking at the performance of

the combination of the different classifiers whilst either varying the number of features extracted, or

varying the window size.

7.1. Experimental Setup

As mentioned previously, the aim of this paper is to discuss and compare a total of six different

classifiers. There are the three main classification functions that we will be using; kNN, SVM and

Naive-Bayes. As well as the two methods discussed; feature variance and window-size variance, that

will be combined with each of these functions. Using these six classifiers, the overall task is to try an

detect faces within images, where the face takes up most of the image. All of the images used are in

greyscale and are of size 92x112 pixels; there are 100 of them in total - 50 object images of faces,

and 50 non-object images that do not contain a face.

With this, 90% of the images were formed into the training set. This was then further split down, and

20% of these images created the pre-training set with the other 70% creating the actual training set.

The final 10% images were used for testing. For each set, a 50/50 split was kept, where 50% of each

was object and the other 50% was non-object.

For each classifier, Normalized cross-correlation and thresholding was used to generate the required

statistical model. The threshold value used, to see if a given image contained the current feature,

was arbitrarily chosen to be 0.9. The value of k for the kNN was chosen to be 5.

The performance of each classifier was estimated by using cross-validation. We repeatedly trained

and tested the classifiers on independent datasets (pre-training, training and testing), and then

reshuffled everything on each iteration. Therefore, everything was completely random as to

eliminate over-fitting. In total, 10 cross-validation iterations were performed, and the results

obtained were used to generate the ROC curves and Accuracy graphs presented in 7.2.

The program was coded into Matlab, and when run on a computer with a 2.7GHz Intel Quad Core

processor, the computation time took several hours. To select and extract the features from pre-

training was almost instantaneous. The bottleneck for the program was constructing the statistical

model for training, and the feature vectors for testing. This was due to the normalized cross-

correlation as it needs to scan the feature over the whole image and compute the likelihood that the

two portions are equal. Obviously the fewer features we have, the faster the program runs; which

can be as little as 15 minutes all of the way up to approximately 20 hours.

7.1.1. Feature Variance based Classifiers

For this classifier, the number of features that were extracted from each pre-training image was

varied. In total there were exactly 20 images (10 object and 10 non-object) that formed the pre-

training set, and the number of features that were extracted from each image was varied between 1

18

to 20. Therefore, the classifier had to make predictions on the testing set either using only 20

features or up to 400 features. Each feature was of a window size 24x24 pixels, and were selected

and extracted randomly.

The remaining 40 object and 40 non-object images were used for training and testing. 35 object and

35 non-object image were selected at random to be used for training, with the remaining images to

be used for testing the classifier. Normalized cross-correlation and thresholding was used to

construct a binary matrix at the training phase for a statistical model, using the training images and

extracted features.

7.1.2. Window Variance based Classifiers

The next set of classifiers all had the number of features extracted from the pre-training images

fixed. Instead, we varied the size of each of the features. In the previous classifier, the features all

had a fixed window size of 24x24, however, for these classifiers the window size for each feature will

vary from size 2x2 to 60x60. With the number of features being extracted being fixed at 10 - so 200

features in total, as the size of the pre-training set is still 20 images.

Again, at each iteration of the cross-validation, we used 35 object and 35 non-object images to learn

the classification function. With the remaining 5 object and 5 non-object images being used for

testing this obtained classification function. At each iteration of the cross-validation, each of the

datasets were reshuffled.

19

Figure 9: Accuracy graph for varying the total number of features

Figure 9: Accuracy graph for the feature variance classifiers, using a kNN, SVM and Naive-Bayes classifiers. As more

features are extracted, the accuracy of each classifier increases; drastically so between 2-4 features extracted from each

image. In some ways, we can see that varying the number of features does not affect a SVM or Naive-Bayes, as their curves

are virtually the same - yet still different from that of the kNN.

7.2. Classification Results

The classification results for each of the classifiers will be presented by firstly accuracy graphs,

depicting how the accuracy of each of the classifiers varies depending on the number of features, or

the size of the features extracted. Finally, we shall see the results then presented in the form of

Receiver Operating Characteristic (ROC) curves, which will be explained in more detail after the

accuracy graphs.

7.2.1. Accuracy Graphs

Accuracy graphs are used to show how the accuracy of the classifier changes as we alter certain

variables. The higher the curve is the better, with 100% indicating a perfect classification across

every iteration from cross-validation. Figure 9 shows the accuracy graphs plotted for each classifier

when we vary the number of features that are extracted from each pre-training image. We varied

the number of features extracted from each image from 1 through to 20 in steps of 1; total number

of features would be from 20 through to 400 at a window size of 24x24. Every time we incremented

the number of features extracted, cross-validation was run 10 time to calculate the average

accuracy; this was then used to generate the presented graph.

The graph shows exactly what you would more or less expect, as we increase the total number of

features, the overall accuracy increases on all classifiers. When we extract between 1 to 3 features

from each image, the accuracy of classification drastically increases, but after a while it appears to

level out, only increases very slowly. We can also see that at certain points, the accuracy of the

classifiers seems to spike or drop randomly, and this it trivial as to why. You have to remember that

everything we are doing is completely random. At every iteration of cross-validation we randomly

reshuffle the images around. So that the new iteration has a different pre-training, training and

testing set. On top of this, we also re-extract the features again, and these features

20

Figure 10: Accuracy graph for varying window sizes

Figure 10: Accuracy graph for the window-size variance classifiers, using a kNN, SVM and Naive-Bayes classifiers. We

can see that the peak of accuracy is with a window size between 10x10 and 20x20. Any smaller or larger than this results in

the classifiers merging towards to 50% accuracy. This 50% accuracy is achieved when we classify every test image as being

non-object. Since there are 50% object and non-object test images, a 50% accuracy is achieved.

themselves are random too. Whenever the accuracy of classifier spikes, it means that the features

extracted from pre-training have been informative, that is, the features hold informative information

about the class that they have been extracted from. Conversely, when the accuracy drops, it is the

opposite effect taking place. A spike in accuracy can be clearly seen when we extract 11 features

from each image, and test accuracy using a kNN classifier.

Figure 10 shows the accuracy graphs plotted for each classifier when we vary the window size of

each feature that is extracted from each pre-training image. We varied the window size of each

feature from 2x2 through to 60x60 in steps of 2x2, with the total number of features extracted from

each image being 10 (200 total). Every time we incremented the window size of the features, cross-

validation was run 10 time to calculate the average accuracy; this was then used to generate the

presented graph.

Displayed within the graph is again what you would expect. As the window size of each feature is

gradually increased, the overall accuracy of the classifiers decrease, and drastically so between the

window sizes of 35x35 to 60x60; where at 50x50 onwards the classifiers appear to merge. In fact,

this is the case. As the window size approaches the full size of the images, then accuracy will

eventually level off at an accuracy of 50% for all classifiers. The reason as to why the accuracy drops

so drastically is as follows: as the features increase in size, then they are more prone to noise, such

as background imagery. Therefore they lose the ability to focus in on what is really important. If a

feature is of a whole house, then is it possible for a similarity-based measure like the normalized

cross-correlation to generate a high correlation coefficient when it is compared to a face image - so

the object image is predicted as non-object. Conversely, the smaller the feature is in size, the better

21

 Actual

 1 0

P
re

d
ic

te
d

1 TP FP

0 FN TN

Figure 11: Example of a ROC table

Figure 11: Example of a ROC table. Here '1' represents an image that is object, and '0' and image that is non-object in the

actual columns. '1' and '0' in the predicted rows represent what the classifier has predicted the image as being.

 the performance of the classifiers. This can be clearly viewed on Figure 10 between the window

sizes of 10x10 and 20x20, where accuracies of up to 94% are obtained on both the SVM and the

Naive-Bayes. This high accuracy is because the features are of the 'correct size'. They are of a perfect

size to store just the right information for the classifiers, and barely have any noise affecting them.

On a final note, we also see that between the window sizes of 2x2 and 10x10, the accuracies start of

very low and then dramatically increases. Just like when a feature can be too big, it is also possible

for a feature to be too small. Unlike with large features which are prone to noise, small feature

contain barely any information of use about the classes that the classifiers could use.

7.2.2. ROC Curves

When we look at the results generated from a classifier, there are two important details that we are

interested in. These details are that classifier must have a low false alarm rate and a high sensitivity

(or hit detection rate). A ROC curve represents the ability of a classifier combining both of these

constraints. The higher the curve is, the better the classifier is. So the closer a classifier is to having a

false alarm rate of 0 and a sensitivity of 1, the better it is. Therefore, a perfect classifier would have a

false alarm rate of 0 and a sensitivity of 1. To generate each of the presented curves, the results at

each iteration of cross-validation were summed and then averaged. These results come in the form

of true positive, true negative, false negative and false positive, and are what we use to calculate the

false alarm rate and sensitivity. Here, the four values mean:

 True Positive :- Ability of the classifier to classify an object image as being object.

 True Negative :- Ability to classify non-object images as being non-object.

 False Negative :- Falsely classify an object image as being non-object.

 False Positive :- Falsely classify a non-object image as being object.

These four values are stored in a ROC table, exampled in Figure 11. The table is generated by

checking to see if a testing image's predicted label equals its actual label. If its actual label is '1' and

its predicted label is also '1', then we increment the true positive value. Another case could be if the

images actual label is '1' and its predicted label is '0'; here we would increment the false negative

value as we have falsely classified something that is object as being non-object.

We proceed to use these four values to calculate the corresponding sensitivity and false alarm rates.

Sensitivity, as previous mentioned is a measure of the hit rate, which shows how many of the object

test images the classifier has correctly identified as being object among all of the object test

22

Figure 12: ROC curve for varying the total number of features

Figure 12: ROC curve generated for the classifiers that have their total number of features varied, using a kNN, SVM and a

Naive-Bayes classifier. Here the Naive-Bayes and SVM classifiers have a significantly higher curve than that of the kNN

classifier. The curves here take a long time until they converge to a 100% detection rate.

 images available. Whereas the false alarm rate measures the amount of incorrect object results that

occur (how many non-object test images have we classified as being object) among all of the non-

object test images available. Sensitivity is calculated as follows:

We take the total number of correctly identified object images (true positive), and divide it by the

total number of object test images used (true positive + false negative). Conversely, the false alarm

rate is calculated as follows:

Here we take the total number of incorrectly identified object images (false positive), and we the

divide it by the total number of non-object test images used (false positive + true negative).

The graph represented in Figure 12 is the ROC curve generated for the feature variance classifiers.

Here we vary the total number of features extracted, and we can see that an SVM classifier

outperforms the other two classifiers. For example, if we look at a 10% false alarm-rate, then the

detection rates for a kNN classifier is around 78%, for a Naive-Bayes classifier it is around 77%.

Whereas for a SVM classifier, the detection rate at a 10% false alarm-rate is over 90%. The red line

illustrated in the presented graph is what is known as a random guess line. The closer a curve is to

this line the worse. If a curve is on the line (or below it, which is something we really do not want),

then we say the classifier has performed poorly.

23

Figure 13: ROC curve for varying the window size

Figure 13: ROC curve generated for the classifiers that have the window size for their features varied, using a kNN, SVM

and a Naive-Bayes classifier. The kNN and SVM curves are significantly higher than the Naive-Bayes. Another detail to

observe, is that the curves quickly converge to a 100% detection rate, except for the Naive-Bayes curve.

In Figure 13 we vary the window size of each feature. Here we can see that the SVM and the kNN

classifiers outperform the Naive-Bayes classifier quite significantly. If we look at the detection rates

from a false alarm-rate of 10%, then we see that the detection rate for a kNN classifier is around

94%, which is a significant improvement in performance compared to the corresponding kNN

classifier when we vary the number of features extracted. For a Naive-Bayes classifier the detection

rate is around 84%. The SVM classifier outperforms them though with a detection rate of over 98%

at a 10% false alarm-rate.

At first glance it is clear to see that the window size variance scheme performs better than the

scheme using the feature variance. This is because the curves in Figure 13 are not only higher than

the ones in Figure 12, but also because they converge to a 100% detection rate faster. Meaning that

the classifiers accurately identify all of the object images as being object. Whereas with the feature

variance classifiers, this convergence is very slow. Therefore we can safely assume that in order for

these classifiers to converge faster, we are required to extract more features from the pre-training

phase. We can also see that in both methods, a SVM performs significantly well in identifying object

images; whether we are varying the total number of features or the window size of those features. If

we were not using a SVM classifier, then we can see that a kNN classifier is best to use when varying

the window size; its performance is far better than that of the Naive-Bayes. Where as a Naive-Bayes

classifier is the best choice when varying the total number of features, far outperforming that of the

kNN.

24

8. Conclusions and Future Work
We have presented an approach, and compared multiple classifiers when trying to identify human

faces contained within greyscale images. Features were randomly extracted from a set of pre-

training images. During this feature extraction process we varied either the total number of features

that were to be extracted at a fixed window size, or varied the window size of each feature that was

extracted. These features were then used to learn three classification functions - a kNN, SVM and a

Naive-Bayes. The learned functions were then tested, with their results being presented in the form

of Accuracy graphs and ROC curves.

From the results that were presented, we can see that there exists a possible linear split between

the two classes of face and non-face. This indication is proved from the results of the ROC curves for

a Linear Support Vector Machine, which achieves detection rates of over 90%.

We have also discovered the trade-offs for either varying the total number of features extracted, or

varying the window size of the features. The trade-off for varying the number of features is obvious;

as we increase the number of features extracted then overall accuracy of the classifiers increases,

but this accuracy will soon level off - or appear too, except it is increasing very slowly. The trade-off

for varying the window size of the features is if we start off with a feature being the size of the

whole image, then the accuracy achieved will be 50%. As we begin to decrease the size of the

features, this accuracy starts to increase, and will peak at a certain point - which we found to be

between 10x10 and 20x20 for images of size 92x112. However, as we shrink the features beyond this

point, accuracy drastically decreases until we reach the 50% accuracy mark again.

This work can be extended in several directions. One direction could be to see how same approach

works on different classes, for example car and non-car images. Here we could try and detect the

sides of cars within images like in [1, 11]. Another direction that we could extend into is something

that was originally going to be done, but time was running low. This direction would be this:

currently we are extracting random features from some pre-training set, these features can be

either informative or non-informative. So what if we were to again, extract random features from

some pre-training set, but this time we filter the acquired features for only the informative ones.

This could be done with something like the AdaBoost algorithm, explained in [23], and will require

more features to be extracted. Other classification functions could also be implemented, to see how

their accuracies would fair. Such as a decision tree like in [12] or a Tree Augmented Network, like

that implemented in [1].

25

9. References

[1] M. Vidal-Naquet and S. Ullman. Object Recognition with Informative Features and Linear
 Classification. In ICCV, pages 281-287, 2003.
[2] C.J.C. Burgess. A Tutorial on Support Vector Machines for Pattern Recognition. In Data
 Mining and Knowledge Discovery, 121-167, 1997.
[3] P. Viola and M. Jones. Rapid Object Detection using a Boosted Cascade of Simple Features. In
 Proceedings IEEE Conf. on Computer Vision and Pattern Recognition, 2001.
[4] P. Cunningham and S.J. Delany. k-Nearest Neighbour Classifiers. Technical Report UCD-CSI-
 2007-4, 2007.
[5] K. Briechle and U.D. Hanebeck. Template Matching using Fast Normalized Cross Correlation.
 Proc. SPIE 4387, 95, 2001.
[6] T. Kanade. Picture Processing System by Computer Complex and Recognition of Human
 Faces. Ph.D. Thesis, Kyoto University, 1973.
[7] R. Chellappa, C.L. Wilson and S. Sirohey. Human and machine recognition of faces: A survey.
 Proc. of the IEEE, 83(5), 1995.
[8] E. Alpaydm. Introduction to Machine Learning. The MIT Press, 2004.
[9] http://en.wikipedia.org/wiki/Face_detection#Applications. Face Detection. 16th April 2011.
[10] R. Ariizumi, S. Kaneda and H. Haga. Energy Saving of TV by Face Detection. Proc. of PETRA,
 95, 2008.
[11] S. Agarwal and D. Roth. Learning a Sparse Representation for Object Recognition. Proc. of
 ECCV 2002, volume 4, pages 113-130, 2002.
[12] Y. Amit and D. Geman. A computation model for visual selection. Neural Computation,
 11(7):1691-1715, 1999.
[13] A. Mohan, C. Papageorgiou and T. Poggio. Example-based Object Detection in Images by
 Components. IEEE Trans. PAMI, 23, 4, 2001.
[14] H. Schneiderman and T. Kanade. A Statistical Approach to 3D Object Detection applied to
 Faces and Cars. Proc. of the Eighth IEEE International Conference on Computer Vision (2000),
 June 2000.
[15] M. Turk and A. Pentland. Eigenfaces for Recognition. Journal of Cognitive Neuroscience,
 3:71-86, 1991.
[16] J.P. Lewis. http://www.idiom.com/~zilla/Papers/nvisionInterface/nip.html, Fast Normalized
 Cross-Correlation. 18th April 2011.
[17] F. Zhao, Q. Huang and W. Gao. Image Matching by Normalized Cross-Correlation. Proc. IEEE
 2006, volume 2, pages 729-732, 2006.
[18] Z. Zhang, R.K. Srihari and A. Rao. Face Detection and its Applications in Intelligent and
 Focused Image Retrieval. Proc. of the Eleventh IEEE International Conference on Tools with
 Artificial Intelligence (1999), 1999.
[19] S.I. Gallant. Perceptron-Based Learning Algorithms. Proc. of IEEE Transactions on Neural
 Networks (1990), 1990.
[20] J. Jantzen. Introduction to Perceptron Networks. Proc. of PETRA, Tech. report 98-H 873, 25
 October 1998.
[21] P. Langley and S. Sage. Induction of Selective Bayesian Classifiers. Proc. of Tenth Conference
 on Uncertainty in Artificial Intelligence (1994), 1994.
[22] O. Jesorsky, K.J. Kirchberg and R.W. Frischholz. Robust Face Detection Using the Hausdorff
 Distance. Proc. Third International Conference on Audio and Video-based Biometric Person
 Authentication, LNCS-2091, pages 90-95, 6th June 2001.
[23] Y. Freund and R.E. Schapire. A Short Introduction to Boosting. Journal of Japanese Society for
 Artificial Intelligence, 14(5):771-780, 1999.

http://en.wikipedia.org/wiki/Face_detection#Applications
http://www.idiom.com/~zilla/Papers/nvisionInterface/nip.html

26

[24] D. Masip, M. Bressan and J. Vitriá. Classifier Combination Applied to Real Time Face
 Detection and Classification. Recerca Automàtica, Visió i Robòtica, Ed. UPC, A. Grau, V. Puig
 (Eds.), 345-353, 2004.
[25] Y. Jiang and Z. Zhou. Editing Training Data for kNN Classifiers with Neural Network Ensemble.
 Proc. of ISNN(1) 2004, pages 356-361, 2004.
[26] H.A. Rowley, S. Baluja and T. Kanade. Neural Network-Based Face Detection. Computer
 Vision and Pattern Recognition, 1996, pages 203-208, 1998.
[27] P.Viola and M. Jones. Robust Real-time Object Detection. International journal of Computer
 Vision, Volume 57, pages 137-154, 2002.
[28] E. Osuna, R. Freund and F. Girosi. Training Support Vector Machines: an Application to Face
 Detection. Proc. of CVPR'97, June 1997.

